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Modeling of textile composites with warp/weft frictional contact
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Abstract. A 2D modeling of textile composites is studied. The modeling is applicable to woven textile composites
with flat fibers, used as reinforcing fibers of composite materials. Two 2D displacement fields are introduced, one
for each layer of the fabric. The warp/weft interaction is taken into account by a nonlinear functional which
characterizes the frictional contact. An explicit form of the warp/weft contact pressure is proposed. A numerical
approximation of a solution of the variational problem is presented.
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1. Introduction

We study the two-dimensional behavior of textile composites used as reinforcing fibers of
composite materials. The modeling is applicable to textile composites with flat fibers, made
from glass, carbon, kevlar,. . . for which the warp/weft contact area is significant. The model
is two dimensional because the constitutive equations are set in the plane and displacement
fields considered are two-dimensional.

There exist various mechanical models for textile composites [1], but most of them do not
express explicitly the warp/weft interaction within the textile composite plate. These models
are generally suitable for coated textile composites. For uncoated textile composites, Caillerie
and Tollenaère [2] propose a 2D model with a warp/weft linear elastic spring back. Following
Leguillon and Lené [3], they use two 2D displacement fields, one for each layer of the textile
composite plate. But due to the frictional contact, the warp/weft interaction is neither linear
nor elastic.

In this paper we keep the two-layers model of Caillerie and Tollenaère [2]. We replace the
linear elastic spring back by a warp/weft frictional contact term. Our motivation for this study
lies in an attempt to model the forming (or draping) of textile composites, which is necessary
for composite materials with complex geometries. Certain properties of the final component,
such as stiffness, thermal expansion or conductivity are dependent on the reinforcing fibers
location within the component. The 2D model presented here can be regarded as a first step
towards this goal. Note that there exist numerical simulation methods, for draping of textile
composites, based ongeometric assumptions(Bendaliet al. [4], Van Westet al. [5]) without
mechanical properties of the fabric.

The paper is organized as follows. In Section 2 we state the mechanical problem with
frictional contact, under the small deformations assumption. In Section 3 we give an explicit
expression for the warp/weft contact pressure. A variational formulation is given in Section 4.
In Section 5, we discuss the numerical approximation of a solution of the problem.
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Figure 1. Detail of a woven textile composite plate.

Figure 2. Cross-section of the fabric.

2. Modeling of the warp and weft layers

We consider the woven textile composite plate represented in Figure 1, which occupies a
domain� in R2 of boundary0 = ∂�. The plate consists of two families of fibers : warp
fibers (parallel tox2-axis) and weft fibers (parallel tox1-axis).

The idea, due to Caillerie and Tollenaere [2], consists of considering each family of fibers
as a separatecontinuous layer. Then we need two displacement fieldsuα, for α = 1,2;
with uα = (uα1, u

α
2) the in-plane displacement field of the layerα. We setu = (u1, u2),

the displacement field of the plate. Under the small deformations assumption, constitutive
equations for each layerα are (repeated-index convention)

σαij = aαijklEkl(uα), i, j,= 1,2 (1)

Ekl(u
α) = (∂luαk + ∂kuαl )/2, k, l = 1,2. (2)

The elasticity constantsaαijkl of the layerα are generally obtained by homogenization. As
shown in Figure 2, the weaving creates a fibers waviness. Then elasticity constantsaαijkl must
take into account the reduction due to the fibers waviness. We use here a simple rule due to
Cox and Dadkhah [6] (see also [1]) for computingaαijkl .

LetEα andGα be the axial and shear moduli of a fiber andνα is its axial Poisson’s ratio.
Suppose that the waviness takes the form of sinusoidal oscillations in the path of a fiber, with
a wavelengthlα and an amplitudedα, α being the number of the layer. Cox and Dadkhah [6]
show that the stiffness of a layer is reduced by the factor

κα =
{

1+ π2

(
dα

lα

)[
Eα

Gα
− 2(1+ να)

]}−1

, α = 1,2. (3)

Let ãαijkl be the homogenized elasticity constants of a layerα, formed ofstraight fibers. The
elastic-moduli tensor(ãαijkl) is obtained by classical homogenization methods, see for example
Caillerie and Tollenaère [2]. Then the elastic-moduli tensor of a layerα of the plate is given
by
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aαijkl = καãαijkl . (4)

We assume that the plate is fixed on a part of its boundary00 = 01
0∪02

0, with mes(0α0 ) > 0.
The plate is subjected to in-body forcesf α. Equilibrium equations of layers are (without any
consideration on warp/weft interaction)

divσα + f α = 0 on�α, α = 1,2, (5)

uα = 0, on0α0 , α = 1,2. (6)

It remains to introduce the warp/weft frictional contact. Letp(u) > 0 be the (unknown)
warp/weft contact pressure, which depends on the solutionu = (u1, u2) of the problem. Let
µF > 0 be the friction coefficient. The tangential relative displacement isū = u1 − u2. If
σT is the tangential stress then the warp/weft frictional contact condition can be written as
(Coulomb law)

|σT (u)| < µFp(u)⇒ ū = 0, (7)

|σT (u)| = µFp(u)⇒ ∃γ > 0, such that̄u = −γ σT (u). (8)

In the next section, we give an explicit formula for the warp/weft contact pressurep(u).

3. Modeling of the warp/weft frictional contact

As shown in Figure 2, the weaving introduces a waviness of fibers. Since most of the fibers
used have a high elastic modulus, a stretchλα of a fiber of a layerα implies lower (ifλα ≤ 1)
or higher (ifλα > 1) contact pressure on the other layer. The warp/weft contact pressure can
therefore be considered as a function of the stretch of fibers of the plate.

Let η > 0 be the initial warp/weft contact pressure due to weaving. Since the textile
composite is a periodic structure,η is a mean-value on a unit cell. Letpα be the contact
pressure produced by the layerα. We assume that the contact pressure is alinear function of
the stretch, i.e.

pα = ηλα/2, α = 1,2. (9)

Then the warp/weft contact pressure, within the plate, is

p = p1+ p2 = η(λ1+ λ2)/2. (10)

Note that ifλ1 = λ2 = 1, thenp = η the initial warp/weft contact pressure.
Let e1 ande2 be natural base vectors ofR2. Then stretch functionsλα are given by (no

summation overα)

λα(uα) = |eα + ∂αuα|, α = 1,2 (11)

where | · | is the Euclidean norm ofR. Unfortunately, the stretch function given by (11)
leads to mathematical difficulties with the friction functional. Since we work under the small-
deformations assumption, we can neglect nonlinear terms under the square root in (11). Then,
using the approximate formula

√
1+ ε ≈ 1+ ε/2, we obtain the linearized stretch function

(no summation overα)
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Figure 3. Finite elements mesh of the plate in its undeformed configuration.

Figure 4. Deformed configuration of the plate� subjected to the prescribed displacementuα01
= 5e1 mm.

λα(uα) = 1+ ∂αuαα = 1+ Eαα(u
α), α = 1,2. (12)

Substituting (12) in (9), we find that the warp/weft contact pressure is

p(u) = p1(u1)+ p2(u2) = η

2
(2+ E11(u

1)+ E22(u
2)). (13)

4. Variational formulation

In order to derive variational formulation of the problem (5) - (8), we begin by defining spaces,
set and forms used. We set

L2(�) = (L2(�))4 and H1(�) = (H 1(�))4.
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Figure 5. Computed warp/weft contact pressure of the plate� subjected to a prescribed displacement
uα01
= 5e1 mm.

Figure 6. Computed warp/weft contact pressure contour of the plate� subjected to a prescribed displacement
uα01
= 5e1 mm.

The product spaceH1(�) is a Hilbert space equipped with the inner product and associated
norm

(u, v)1 =
∫
�

(
uαi v

α
i + ∂juαi ∂jvαi

)
dx and ‖v‖1 = [(v, v)1]1/2 .

We introduce the following notations

a(u, v) =
∫
�

σαij (u
α)Eij (v

α)dx = aα(uα, vα), (14)

f̃ (v) =
∫
�

f α · vαdx = f̃ α(vα), (15)

with usual assumptions on(aαijkl) andf α.
We introduce the following nonlinear functional8, which serves to characterize the virtual

work of frictional forces
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Figure 7. Deformed configuration of the plate� subjected to a prescribed displacementuα01
= 5e1 mm, with

orthotropic axes orientationθ = 30◦.

Figure 8. Computed warp/weft contact pressure of the plate� subjected to a prescribed displacement
uα01
= 5e1 mm, with orthotropic axes orientationθ = 30◦.

8(u, v) =
∫
�

p(u)|v̄|dx, (16)

where v̄ = v1 − v2 is the virtual relative tangential displacement andp(u) the warp/weft
contact pressure given by (13). The functional8 is well defined foru, v ∈ H1(�).

Finally, the set of admissible displacement fields is given by

K = {v = (v1, v2) ∈ H1(�)|v = 0 on00} = K1 ×K2, (17)

where

Kα = {vα ∈ (H 1(�))2|vα = 0, on0α0 }.
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Figure 9. Computed warp/weft contact pressure contour of the plate� subjected-to-a prescribed displacement
uα01
= 5e1 mm, with orthotropic axes orientationθ = 30◦.

Figure 10. Deformed configuration of the plate� subjected to a prescribed displacementuα = 5e1 mm, with
orthotropic axes orientationθ = 45◦.

The variational principle for problem (5) - (8) is established through the following theorem.
Theorem 1A displacement fieldu = (u1, u2) is a solution to (5) - (8), ifu satisfies

u ∈ K , a(u, v− u)+ µF8(u, v)− µF8(u,u) ≥ f̃ (v− u), ∀v ∈ K . (18)

The proof of the theorem 1 is almost the same as the proof of [7, theorem 10.1] with
uT = ū, un = 0 and σn(u) = p(u).

5. Numerical approximation

The crucial point of the variational inequality (18) is that the friction term8 is non convex
and non differentiable. These properties are particularly troublesome when one attempts to
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Figure 11. Computed warp/weft contact pressure of the plate� subjected to a prescribed displacement
uα01
= 5e1 mm with orthotropic axes orientationθ = 45◦.

Figure 12. Computed warp/weft contact pressure contour of the plate� subjected to a prescribed displacement
uα01
= 5e1 mm, with orthotropic axes orientationθ = 45◦.

develop numerical methods for solving (18). To overcome these difficulties, a classical way
in nonlinear mechanics is to work in two steps: first a reduced problem, in which the contact
pressurep(u) is assumed to be known, is solved; and second, an iterative scheme for solving
the general inequality (18) is constructed.

5.1. THE REDUCED PROBLEM

We assume that the contact pressure,p = p(x1, x2), is known. Then the friction term (16)
becomes

8(v) =
∫
�

p|v̄|dx. (19)

The functional8(v) is still non-differentiable, but it is now convex and lower semi-continuous.
The variational inequality (18) is now reduces to

u ∈ K , a(u, v− u)+ µF8(v)− µF8(u) ≥ f̃ (v− u), ∀v ∈ K . (20)
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To overcome the non-differentiability of8, a classical way is to use a regularization of the
Euclidean norm| · | in (19). We can use, for example, the following regularization function

ρε : R2 −→ R; ρε(x) =
{ |x| − ε/2, if |x| > ε,
|x|2/(2ε), if |x| ≤ ε,

whereε is a small positive number (the regularization parameter). Then the regularized func-
tional8ε of 8 is given by

8ε(v) =
∫
�

pρε(v̄)dx. (21)

The functional8ε is Gâteaux differentiable, with

〈D8ε(uε, v〉,=
∫
�

∂ρε

∂u
(ū) · v̄ dx,

where

∂ρε

∂u
(ū) =

{
ū/|ū| if |ū| > ε

ū/ε if |ū| ≤ ε.
The corresponding variational inequality is then

uε ∈ K , a(uε, v− uε)+ µF8ε(v)− µF8(uε) ≥ f̃ (v− uε), ∀v ∈ K . (22)

Since8ε is convex, (22) is a convex minimization problem. It follows that a solutionuε, of
(22) is a solution of the variational equality

uε ∈ K , a(uε, v)+ µF 〈D8ε(uε), v〉 = f̃ (v), ∀v ∈ K . (23)

The discretization of (23) is obtained in the usual way. Let�h = ∪e�e(h), h > 0, be a
regular triangulation of�. We noteuh = (u1

h, u
2
h) a finite-dimensional approximation ofu

over�h andKh a finite-dimensional subset ofK . The finite elements approximation of the
variational equality (23) is

uεh ∈ Kh, a(uεh, vh)+ µF 〈D8ε(uεh), vh〉 = f̃ (vh), ∀vh ∈ Kh. (24)

Equation (24) leads to a nonlinear system which can be solved by a standard Newton-
Raphson method or a successive iterative method. In this last method, at thekth iteration, we
solve the linear system inukεh

a(ukεh, vh)+ µF 〈(D8ε(u
k−1
εh ), vh〉 = f̃ (vh), ∀vh ∈ Kh, (25)

for k = 1,2,3, . . . , for an initial approximationu0
εh.

We can now define the approximation of the full adhesion zones and the sliding zones. For
this purpose, we set

|ūεh| < ε H⇒ full adhesion,

|ūεh| ≥ ε H⇒ sliding.
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5.2. THE GENERAL PROBLEM

The extension of the previous results to the general variational inequality (18) is straightfor-
ward. We simply use an iterative method for approximating the contact pressurep(u). Indeed,
at thekth iteration, we use in the formula (19)pk = p(uk−1

εh ), i.e. the contact pressure obtained
at the end of the previous step. The process is repeated until successive contact pressures do
not differ by a preassign toleranceεp, i.e.‖pk − pk−1‖/‖pk‖ < εp.

With the above calculations, the practical implementation of the numerical method for
solving (18) can finally be described as follows.
Step 0. Initialization.k← 0,u0

εh = 0 (full adhesion),p1 = p(u0
εh)

Step 1. k← k+1 Solve the nonlinear system inukεh (24). Compute the new contact pressure
pk+1 = p(ukεh).

Step 2. If‖pk+1− pk‖/‖pk+1‖ < εp then STOP else go to Step 1.
In all the examples reported in the next section, the algorithm stopped withk ≤ 5. In Step 2,

we use the successive iterative scheme (25) for computingukεh for obvious simplicity reasons.
Furthermore, it provides very rapid convergence ifuk−1

εh is used as an initial approximation
when computingukεh.

5.3. NUMERICAL EXPERIMENTS

The numerical algorithm described in the previous section was implemented in Fortran 77
on a SGI Octane workstation, with the regularization parameterε = 10−5 and the contact
pressure toleranceεp = 10−5.

We consider the textile composite plate�, represented in Figure 3, made from flat glass
fibers. The composite plate is fixed on its left boundary00 = {x = 0}, i.e. u00 = 0. The
upper boundary(y = 250)and the lower boundary(y = 0) are free. Note that the final goal
of our study is the modeling of the forming of textile composite plates. Since the forming
is a prescribed-displacements process, the numerical examples presented here deal with a
prescribed displacements on01.

The weaving introduces an initial contact pressureη = 1870 MPa. The friction coefficient
of glass fibers isµF = 0·3. The homogenized elastic moduli of each layer of the plate are:

E1
L = 13800 MPa, E1

T = 5200 MPa, ν1
LT = 0·12,G1

LT = 1870 MPa,

E2
L = 5200 MPa, E2

T = 13800 MPa, ν2
LT = 0·12,G2

LT = 1870 MPa,

with EL the longitudinal Young’s modulus,ET the transverse Young’s modulus,νLT the
Poisson’s ratio andGLT the shear modulus. The thickness of each layer of the plate ise =
0·7 mm.

The weaving is characterized by a wavelengthlα = 10 mm,α = 1,2, and an ampli-
tude dα = 0·7 mm, α = 1,2. With the data above, the reduction factor in (4) isκα =
0·812248, α= 1,2.

A finite-element mesh, of the plate, consisting of 646 4-nodes isoparametric elements (700
nodes) for�α, for α = 1,2, is represented in Figure 3. The meshes of the two layers coincide
in the undeformed configuration of the plate. Since we consider the plate as an assembly of
two continuous layers, the mesh of the plate does not necessary coincide with the natural mesh
of the textile composite.

In the first example, we study the behavior of the model in the case of a prescribed dis-
placementuα01

= 5e1 mm, forα = 1,2, with e1 the first natural base vector ofR2. Figure 4
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represents the computed deformed configuration of the textile composite plate. The sliding
zones are represented by duplicated lines. The resulting contact pressure is represented in
Figure 5–6. Note that there is no sliding where the contact pressure is higher,i.e. near the
boundaries00 and01. The variation of the contact pressurep(u) observed is significant.

We now study the case the orthotropic axes of the plate do not coincide with co-ordinates
axes,(i.e. the orientation of the fibers do not coincides with natural base vectorse1 ande2). If
thex1-fibers orientation is obtained by a rotationθ with respect to thex1-axis, then the elastic
moduli tensor (4) becomes (repeated index convention)

aαijkl = καãαIJKLRI iRJjRKkRLl,

whereR is the rotation matrix

R =
(

cosθ − sinθ

sinθ cosθ

)
.

Note that we need the strain tensor componentsE11(u
1) = ∂1u

1
1 and22(u

2) = ∂2u
2
2 in the

warp/weft contact pressure formula (13). If we setE ′(uα) = R−1E(uα)R, then in (13) we
must useE ′11(u

1) andE ′22(u
2).

The computed deformed shape of mesh and the contact pressure distribution are summa-
rized in Figures 7–9, forθ = 30◦, and Figures 10–12, forθ = 45◦. Since the plate is more
deformable, the computed sliding zones observed in Figure 7 and Figure 10 are significant.
As for θ = 0◦, there is no sliding in high contact pressure zones.

6. Conclusion

We have studied a new mathematical model of textile composite plates with warp/weft fric-
tional contact. Numerical experiments show that the slippage of warp and weft fibers relative
to one another occurs within the plate. Numerical experiments also show that the variation of
the warp/weft contact pressure contributes to maintaining the cohesion of the plate.

Homogenization techniques used in the model allowed us to use meshes which do not
necessarily coincide with the natural mesh of the textile composite plate. That is a significant
advantage over geometrical models when dealing with wide textile composite plate.

The angular variationφ of the warp and weft directions can be computed. Letφ1 andφ2

be the angular variations of the warp and weft directions with respect toe1. For θ = 0, for
example, we have cosφ1 = u1

1/|u1| and cosφ2 = u2
2/|u2|; andφ = φ2 − φ1. Note that the

feasibility of a forming is restricted by the angular variation.
Current study is directed towards extending the model to the forming of textile composite

plates. For this purpose, we will consider the complete Saint-Venant-Kirchoff strain tensor,
i.e.

Eij (u
α) = 1

2
(∂iu

α
j + ∂juαi + ∂iuαk ∂juαk )

and the complete stretch formula (11) in the warp/weft contact pressure formula (10). A quasi-
static scheme will be introduced to overcome the strong nonlinearities. Then at each step of
the quasi-static scheme, the results of this study could be used.
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