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Modeling of textile composites with warp/weft frictional contact
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Abstract. A 2D modeling of textile composites is studied. The modeling is applicable to woven textile composites
with flat fibers, used as reinforcing fibers of composite materials. Two 2D displacement fields are introduced, one
for each layer of the fabric. The warp/weft interaction is taken into account by a nonlinear functional which
characterizes the frictional contact. An explicit form of the warp/weft contact pressure is proposed. A numerical
approximation of a solution of the variational problem is presented.
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1. Introduction

We study the two-dimensional behavior of textile composites used as reinforcing fibers of
composite materials. The modeling is applicable to textile composites with flat fibers, made
from glass, carbon, kevlar, . for which the warp/weft contact area is significant. The model

is two dimensional because the constitutive equations are set in the plane and displacement
fields considered are two-dimensional.

There exist various mechanical models for textile composites [1], but most of them do not
express explicitly the warp/weft interaction within the textile composite plate. These models
are generally suitable for coated textile composites. For uncoated textile composites, Caillerie
and Tollenaére [2] propose a 2D model with a warp/weft linear elastic spring back. Following
Leguillon and Lené [3], they use two 2D displacement fields, one for each layer of the textile
composite plate. But due to the frictional contact, the warp/weft interaction is neither linear
nor elastic.

In this paper we keep the two-layers model of Caillerie and Tollenaére [2]. We replace the
linear elastic spring back by a warp/weft frictional contact term. Our motivation for this study
lies in an attempt to model the forming (or draping) of textile composites, which is necessary
for composite materials with complex geometries. Certain properties of the final component,
such as stiffness, thermal expansion or conductivity are dependent on the reinforcing fibers
location within the component. The 2D model presented here can be regarded as a first step
towards this goal. Note that there exist numerical simulation methods, for draping of textile
composites, based geometric assumptior®endaliet al. [4], Van Westet al. [5]) without
mechanical properties of the fabric.

The paper is organized as follows. In Section 2 we state the mechanical problem with
frictional contact, under the small deformations assumption. In Section 3 we give an explicit
expression for the warp/weft contact pressure. A variational formulation is given in Section 4.
In Section 5, we discuss the numerical approximation of a solution of the problem.
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Figure 1. Detail of a woven textile composite plate.

Figure 2. Cross-section of the fabric.

2. Modeling of the warp and weft layers

We consider the woven textile composite plate represented in Figure 1, which occupies a
domain in R? of boundaryl’ = 9. The plate consists of two families of fibers : warp
fibers (parallel tov,-axis) and wetft fibers (parallel to -axis).

The idea, due to Caillerie and Tollenaere [2], consists of considering each family of fibers
as a separateontinuous layer. Then we need two displacement fieftisfor « = 1, 2;
with u® = (u,u$) the in-plane displacement field of the layer We setu = (ul, u?),
the displacement field of the plate. Under the small deformations assumption, constitutive
equations for each layer are (repeated-index convention)

o = aiu€uw®), i,j,=12 1)

& (u®) = (ui + duf)/2, k,1=12 2

The elasticity constants’;, of the layera are generally obtained by homogenization. As
shown in Figure 2, the weaving creates a fibers waviness. Then elasticity congtamsist

take into account the reduction due to the fibers waviness. We use here a simple rule due to
Cox and Dadkhah [6] (see also [1]) for computiafy, .

Let E* andG* be the axial and shear moduli of a fiber aridis its axial Poisson’s ratio.
Suppose that the waviness takes the form of sinusoidal oscillations in the path of a fiber, with
a wavelength* and an amplitude®, o being the number of the layer. Cox and Dadkhah [6]
show that the stiffness of a layer is reduced by the factor

o o -1
K“={1+n2(‘;—a) [%-2(1%%]} , o a=12 (3)

Letay;,, be the homogenized elasticity constants of a layefiormed ofstraight fibers The
elastic-moduli tensogay,, ) is obtained by classical homogenization methods, see for example
Calllerie and Tollenaére [2]. Then the elastic-moduli tensor of a layefrthe plate is given

by
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a?/ki = Ka&lqjkl' (4)

We assume that the plate is fixed on a part of its bounBae IJUI'Z, with mes(I%) > 0.
The plate is subjected to in-body forcg$. Equilibrium equations of layers are (without any
consideration on warp/weft interaction)

dive® + f*=0 onQ*,a=1,2, (5)
u*=0, onlg,a=12. (6)

It remains to introduce the warp/weft frictional contact. [pgt1) > 0 be the (unknown)
warp/weft contact pressure, which depends on the solutien(u*, u?) of the problem. Let
wr > 0 be the friction coefficient. The tangential relative displacemet is u' — u?. If
or is the tangential stress then the warp/weft frictional contact condition can be written as
(Coulomb law)

lor (W] < urppU) =0 =0, (1)
lor(W)| = upp(u) = Iy > 0, such thatl = —yor(u). (8)

In the next section, we give an explicit formula for the warp/weft contact pregsgune

3. Modeling of the warp/weft frictional contact

As shown in Figure 2, the weaving introduces a waviness of fibers. Since most of the fibers
used have a high elastic modulus, a strettlof a fiber of a layerr implies lower (ifA* < 1)

or higher (ifA* > 1) contact pressure on the other layer. The warp/weft contact pressure can
therefore be considered as a function of the stretch of fibers of the plate.

Let > 0O be the initial warp/weft contact pressure due to weaving. Since the textile
composite is a periodic structure,is a mean-value on a unit cell. Let be the contact
pressure produced by the layerWe assume that the contact pressurelisear function of
the stretch, i.e.

p*=nr*/2, a=12 9)
Then the warp/weft contact pressure, within the plate, is
p=rp'+p*=n0t+19)/2. (10)

Note that ifA' = A% = 1, thenp = 5 the initial warp/weft contact pressure.
Let e; ande; be natural base vectors &?. Then stretch functiona® are given by (no
summation ovew)

Au®) = l&y + ,u”], a=12 (11)

where| - | is the Euclidean norm oR. Unfortunately, the stretch function given by (11)
leads to mathematical difficulties with the friction functional. Since we work under the small-
deformations assumption, we can neglect nonlinear terms under the square root in (11). Then,
using the approximate formuldl + ¢ ~ 1+ ¢/2, we obtain the linearized stretch function

(no summation ovew)
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Figure 3. Finite elements mesh of the plate in its undeformed configuration.
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Figure 4. Deformed configuration of the plafe subjected to the prescribed displacemthlt = 5e; mm.

AYW®) =1+ 04u;, =14 & (m”), a=12. (12)
Substituting (12) in (9), we find that the warp/weft contact pressure is

p(u) = ptwh + p*w? = g(z + E11(ut) + E2(u?)). (13)

4. Variational formulation

In order to derive variational formulation of the problem (5) - (8), we begin by defining spaces,
set and forms used. We set

L2(Q) = (L3(Q))* and HY(Q) = (H ()%



Modeling of textile composites with warp/weft frictional conta@d1

1883
1882.5

1882

ply)

1881.5

1881

1880.5

Figure 5. Computed warp/weft contact pressure of the pl&esubjected to a prescribed displacement
u‘fél = 5e; mm.
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Figure 6. Computed warp/weft contact pressure contour of the glatibjected to a prescribed displacement
u‘fél = 5e; mm.

The product spackl'(R) is a Hilbert space equipped with the inner product and associated
norm
(U, V), = / (v +dufd;v?)dx and |vly = [(v, v)1]"2.
Q

We introduce the following notations

a(u,v) = / Ji‘;(uo‘)&j(v“)dx = a*®, v%), (14)
Q

fv) = /Q fvde = f4%), (15)

with usual assumptions a@;’;,) and /.
We introduce the following nonlinear function@l, which serves to characterize the virtual
work of frictional forces
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Figure 7. Deformed configuration of the plat® subjected to a prescribed displacemeﬁi‘a} = 5e; mm, with

orthotropic axes orientatioh = 30°.

Figure 8. Computed warp/weft contact pressure of the pl&esubjected to a prescribed displacement

ui‘il = 5e; mm, with orthotropic axes orientatigh= 30°.
(16)

oy = [ puids,
Q
wherev = v! — v? is the virtual relative tangential displacement gmai) the warp/weft

contact pressure given by (13). The functiorais well defined fou, v € H(Q).
Finally, the set of admissible displacement fields is given by
17)

K={v=(v?) e H(Q)v=0 only} = K* x K?,

where

K* = {v* e (H{(Q)*v* =0, onTlg}).
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Figure 9. Computed warp/weft contact pressure contour of the pglagibjected-to-a prescribed displacement
u‘fél = 5e; mm, with orthotropic axes orientaticgh= 30°.
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Figure 10. Deformed configuration of the plate subjected to a prescribed displacemefit= 5e; mm, with
orthotropic axes orientatioh = 45°.

The variational principle for problem (5) - (8) is established through the following theorem.
Theorem 1A displacement field = (u*, 4?) is a solution to (5) - (8), il satisfies

ueK,aU,v—u)+ur®Uv) —prdU,u) > f(v-u), VYveKkK. (18)
The proof of the theorem 1 is almost the same as the proof of [7, theorem 10.1] with
ur =0, u, = 0and g (u) = p(u).

5. Numerical approximation

The crucial point of the variational inequality (18) is that the friction tebnis non convex
and non differentiable. These properties are particularly troublesome when one attempts to
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Figure 11. Computed warp/weft contact pressure of the pl&tesubjected to a prescribed displacement
u‘fél = 5e; mm with orthotropic axes orientatigh= 45°.
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Figure 12. Computed warp/weft contact pressure contour of the giasabjected to a prescribed displacement
uft. = 5e; mm, with orthotropic axes orientatiah= 45°.

develop numerical methods for solving (18). To overcome these difficulties, a classical way
in nonlinear mechanics is to work in two steps: first a reduced problem, in which the contact
pressurep(u) is assumed to be known, is solved; and second, an iterative scheme for solving
the general inequality (18) is constructed.

5.1. THE REDUCED PROBLEM

We assume that the contact pressuyres p(x1, x»), is known. Then the friction term (16)
becomes

(V) = /Qpl\7|dx. (19)

The functionakd (v) is still non-differentiable, but it is now convex and lower semi-continuous.
The variational inequality (18) is now reduces to

ueK,au,v—u)+ urd®V) — urd@) > f(v—u), WekK. (20)
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To overcome the non-differentiability @, a classical way is to use a regularization of the
Euclidean norm - | in (19). We can use, for example, the following regularization function

x| —e/2, if |x| > e,

e - RZ — R; e(X) =
g g [ x2/2e).  if fx| <e.

wheree is a small positive number (the regularization parameter). Then the regularized func-
tional ®, of @ is given by

@0 = [ po@a (21)
Q
The functional®, is Gateaux differentiable, with

_ [ 90 o
(Dq)s(us’\/)v—/g Ju (U)-de,

where
pe _ u/|u| if 0] > ¢
Peay=1 o
ou a/e if U] <e.

The corresponding variational inequality is then
U, €K,  a(Us,V—uy) +pup®.(v) — urdU,) > f(v—u,), YveK. (22)

Since®, is convex, (22) is a convex minimization problem. It follows that a solutipnof
(22) is a solution of the variational equality

U, € K, a(U,, V) + ur(D®.(U,), V) = f(V), VveK. (23)

The discretization of (23) is obtained in the usual way. @gt= U.Q.(h),h > 0, be a
regular triangulation of2. We noteu, = (u}, u?) a finite-dimensional approximation of
over 2, andK, a finite-dimensional subset &. The finite elements approximation of the
variational equality (23) is

Ueh € Kppy  a@(Uep, Vi) 4+ e (D@, (Ugp), Vi) = F(Vi), WV, € Ky, (24)

Equation (24) leads to a nonlinear system which can be solved by a standard Newton-
Raphson method or a successive iterative method. In this last method k#t iteration, we
solve the linear system i,

a(ub,, Vi) + e (DDLU, v) = F(v), Vv, e Ky, (25)

fork =1,2,3,..., for an initial approximation?,.
We can now define the approximation of the full adhesion zones and the sliding zones. For
this purpose, we set

|Uc,| < ¢ = full adhesion

|Ugn| > ¢ = sliding.
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5.2. THE GENERAL PROBLEM

The extension of the previous results to the general variational inequality (18) is straightfor-
ward. We simply use an iterative method for approximating the contact pres@urdndeed,
at thekth iteration, we use in the formula (19} = p(u’;;l), i.e.the contact pressure obtained
at the end of the previous step. The process is repeated until successive contact pressures do
not differ by a preassign toleraneg, i.e. || p* — p* 2|/ p*|l < ¢,.

With the above calculations, the practical implementation of the numerical method for
solving (18) can finally be described as follows.
Step 0. Initializationk < 0, u?, = 0 (full adhesion)p* = p(u%)
Step 1. k < k+ 1 Solve the nonlinear systemur, (24). Compute the new contact pressure

k+1 __ k
p"T = pUg,).

Step 2. If| p**t — pXlI/1p*+H| < &, then STOP else go to Step 1.

In all the examples reported in the next section, the algorithm stopped with. In Step 2,
we use the successive iterative scheme (25) for compufintpr obvious simplicity reasons.
Furthermore, it provides very rapid convergenceifj;f1 is used as an initial approximation
when computingsf, .

5.3. NUMERICAL EXPERIMENTS

The numerical algorithm described in the previous section was implemented in Fortran 77
on a SGI Octane workstation, with the regularization parameter 10> and the contact
pressure tolerance, = 10°°.

We consider the textile composite plaie represented in Figure 3, made from flat glass
fibers. The composite plate is fixed on its left boundBgy= {x = 0}, i.e.ur, = 0. The
upper boundaryy = 250) and the lower boundargy = 0) are free. Note that the final goal
of our study is the modeling of the forming of textile composite plates. Since the forming
is a prescribed-displacements process, the numerical examples presented here deal with a
prescribed displacements oy.

The weaving introduces an initial contact pressyee 1870 MPa. The friction coefficient
of glass fibers ig.r = 0-3. The homogenized elastic moduli of each layer of the plate are:

E! = 13800 MPaE} = 5200 MPav!, = 0.12, G}, = 1870 MPa

E2 = 5200 MPaE2 = 13800 MPav?, = 0.12, G2, = 1870 MPa

with E; the longitudinal Young’'s modulust; the transverse Young’s modulus;; the
Poisson’s ratio and;; 7 the shear modulus. The thickness of each layer of the platesis
0-7 mm.

The weaving is characterized by a wavelenffth= 10 mm,« = 1,2, and an ampli-
tuded* = 07 mm,a = 1,2. With the data above, the reduction factor in (4xfs =
0-812248, a= 1, 2.

A finite-element mesh, of the plate, consisting of 646 4-nodes isoparametric elements (700
nodes) for2*, fora = 1, 2, is represented in Figure 3. The meshes of the two layers coincide
in the undeformed configuration of the plate. Since we consider the plate as an assembly of
two continuous layers, the mesh of the plate does not necessary coincide with the natural mesh
of the textile composite.

In the first example, we study the behavior of the model in the case of a prescribed dis-
placemen'ruj'i1 = 5e; mm, fore = 1, 2, with e, the first natural base vector &F°. Figure 4
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represents the computed deformed configuration of the textile composite plate. The sliding
zones are represented by duplicated lines. The resulting contact pressure is represented in
Figure 5-6. Note that there is no sliding where the contact pressure is higheear the
boundaried"y andT';. The variation of the contact pressyréu) observed is significant.

We now study the case the orthotropic axes of the plate do not coincide with co-ordinates
axes,i.e. the orientation of the fibers do not coincides with natural base veet@sde,). If
thex;-fibers orientation is obtained by a rotati@nvith respect to the;-axis, then the elastic
moduli tensor (4) becomes (repeated index convention)

A = k*ap gL R1i R1j Rk RL1s
where.R is the rotation matrix
cosf —sind
R = ) )
sing cosH
Note that we need the strain tensor componéntéu’) = alu} andy(u?) = 82u§ in the
warp/weft contact pressure formula (13). If we §&w®) = R-1&u*) R, then in (13) we
must uset;; (ut) and&,(u?).
The computed deformed shape of mesh and the contact pressure distribution are summa-
rized in Figures 7-9, fof = 3(°, and Figures 10-12, fat = 45°. Since the plate is more

deformable, the computed sliding zones observed in Figure 7 and Figure 10 are significant.
As for & = 0°, there is no sliding in high contact pressure zones.

6. Conclusion

We have studied a new mathematical model of textile composite plates with warp/weft fric-
tional contact. Numerical experiments show that the slippage of warp and weft fibers relative
to one another occurs within the plate. Numerical experiments also show that the variation of
the warp/weft contact pressure contributes to maintaining the cohesion of the plate.

Homogenization techniques used in the model allowed us to use meshes which do not
necessarily coincide with the natural mesh of the textile composite plate. That is a significant
advantage over geometrical models when dealing with wide textile composite plate.

The angular variatiop of the warp and weft directions can be computed. ¢etind ¢,
be the angular variations of the warp and weft directions with respest teor6 = 0, for
example, we have ces = ul/|u'| and cosp, = u3/|u?|; and¢ = ¢, — ¢1. Note that the
feasibility of a forming is restricted by the angular variation.

Current study is directed towards extending the model to the forming of textile composite
plates. For this purpose, we will consider the complete Saint-Venant-Kirchoff strain tensor,
ie.

1
8,7(14“) = E(&»u‘; + 8]14? + 8,'1428]'14(]:)

and the complete stretch formula (11) in the warp/weft contact pressure formula (10). A quasi-
static scheme will be introduced to overcome the strong nonlinearities. Then at each step of
the quasi-static scheme, the results of this study could be used.
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